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TUTORIAL LOGISTICS

Website: https:/ /netcause.github.io

All materials, slides & references
Qur contact information

You can ask David and Elena questions during the tutorial over chat

There will be a short break half-way through the tutorial

Note: the tutorial uses images from the papers it covers



CAUSAL INFERENCE

Causal inference is the study of how actions,
interventions, or treatments affect outcomes of interest

Increasing interest in studying social phenomena and
extracting causal insights from large amounts of
“found” data

Data Never Sleeps 9.0

How much data is generated every minute?
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What messages in online support groups
cause people to feel more empathy?
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What social interventions can facili i e
the viral spread of a product2®




CAUSAL INFERENCE AND INTERFERENCE

Common among these questions:

They are concerned with causes and effects
There is data from digital platforms that may help with answering them

Interference: the actions of one user can affect the actions of others

When and how can we answer causal questions of interest while accounting for
interference?



INTERFERENCE
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RELATIONAL DATA

User

Political Leaning
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Real-world data is rarely flat!
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HETEROGENEOUS NETWORKS
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Multi-modal
Multi-relational
Multi-dimensional



TUTORIAL OUTLINE

Background
Motivation
Causal inference 101

Causal effects in networks
Interventions and network experiment design

Counterfactuals & causal effects in observational data
Representation, identification, estimation
Block representation
--- 10-minute BREAK ---
Representation challenges
Chain and segregated graphs

Multi-relational data and abstract ground graphs

Discovery

J \

1/3 of tutorial

2/3 of tutorial




'FTfhe Town That Changed
| America's Heart

S —

EXAMPLE: SPREAD OF OBESITY

Home Of The |
ramingham Heart Study |

Analyzed person-to-person spread of obesity

“A person's chances of becoming obese
increased by 57% if he or she had a friend
who became obese in a given interval”

Similar studies on spread of smoking and
happiness

These studies may suffer from spurious
associations due to network dependence™*

Christakis & Fowler. The Spread of Obesity in a Large Social Network Over 32 Years. New England Journal of Medicine. 2007.
**Lee & Ogburn. Network Dependence Can Lead to Spurious Associations and Invalid Inference. Journal of American Statistical Association. 2020.



EXAMPLE: SOCIAL MEDIA AND POLARIZATION

o
Expose people to opposite views => £ " "

Treatment Oiuced Tl
get along better? o P =
bot that retweets
. . Republlcans IIbemT‘:cr:::s:tgeesazr::‘ayfor
Block randomization at level of party ~ & B
attachment and interest in current events =7, »

Control

Answered questions before and after 1 twitter¥
month of following bot of opposite view ol
(\Q | :

Republicans became significantly more M/ estment

Offered $11 to

conservative and Democrats slightly more el
Iib er qI mnwwa?w:‘;:c“j&ﬁ::c‘hdayfor
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Control

Bail, Argyle, Brown, Bumpus, Chen, Hunzaker, Lee, Mann, Merhout, Volfovsky. Exposure to opposing views on social media can increase political polarization. PNAS 201 8.



EXAMPLE: VIRAL MARKETING

. s

Product to share with friends

ey! | found this LivingSocial deal from River Expeditions and thought you may be interested in
it too. Check it out!

Share recipient

River Expeditions
Whitewater Rafting and Camping Trip

CompCIny cdan VCII’y the rest Of the messqge Immerse yourssif in a wic adventure through some of

the most breathtaking scenery in the region as you
lake on 2 rgpids iolhing through West virginia's New
River Goige Nalional Pei, also kiown as "lie Grand

Added Referred Follow-up —
info purchases referrals Earn REWARDS by sharing with FRIENDS \’ -
Sharer 15% lift No effect

Endorsement effect

oy

purchase
. Referrql No effect 65% Iiff Check out other deals
Incentive effect . .
Incentive
Both No effect No effect

T. Sun, S. Viswanathan, E. Zheleva. Creating Social Contagion through Firm-mediated Message Design: Evidence from A Randomized Field Experiment. Management Science 2021.



HOMOPHILY VS. CONTAGION




CAUSAL INFERENCE 101




RELATED TUTORIALS

Shalit & Sontag. Causal Inference for Observational Studies. ICML 2016

https: / /shalit.net.technion.ac.il /homepage /causal-inference-tutorial-icml-2016 /

Kiciman, Sharma. Causal Inference and Counterfactual Reasoning. KDD 201 8.
https: / /causalinference.gitlab.io /kdd-tutorial /

Zheleva, Arbour. Causal Inference from Network Data. KDD 2021.
https:/ /netcause.github.io



https://shalit.net.technion.ac.il/homepage/causal-inference-tutorial-icml-2016/
https://causalinference.gitlab.io/kdd-tutorial/
https://netcause.github.io/
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Same data can have different causal explanations!

Example by Judea Pearl.



SIMPSON’S PARADOX
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POTENTIAL OUTCOMES AND COUNTERFACTUALS

Treatment
Z=1

Treatment (Z): something administered to experimental units;
a cause of interest (e.g., received vaccine or not)

Potential outcome: the outcome Y,(z) that would be realized if an
individual i received a specific treatment z (e.g., got sick or not)

Counterfactual: the outcome Y,(z.) that would have been realized
had an individual had a different treatment z_than the observed z,

Individual causal effect: Y,(Z=1)-Y,(Z=0) = Y.(1)=Y.(0)

Fundamental law of causal inference: Y,(0) can never be observed
at the same time as Y,(1) and the causal effect cannot be measured

How do we estimate causal effects then?

Outcome

Q)



COMMON CAUSAL ESTIMANDS

Individual effects are hard to estimate. Instead: Under certain assumptions

Average treatment effect (ATE) Factual if Factual if
in tfreatment in con’rrol
{—A—\

E[Y(1) — Y (0)] ——Z(Y(l) %,(0)) = (Y(l)z KO 20)
ﬂﬂﬁm

Conditional average treatment effect (CATE) 1 High School
2 ¢ 0] F Bachelors

E[Y(l) —-Y(0)|X = x] 3 1 M High School

SRS,

1 e M Masters
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COMMON ASSUMPTIONS

Consistency: Yi(z,)= y, when Z= z,

Positivity /overlap: a unit could have received any treatment P(Z; = z|X = x;) > 0,Vz, x;

No unmeasured confounders/Ignorability /Exchangeability: (Y(0),Y (1)) L Z|X

Interference assumption: Y,(z) = Y,(z;z\;), a unit's response can be affected by the
treatment it receives and by the treatments received by its neighbors/peers &) <,

E.g., whether someone gets sick depends on the vaccination status of peers



Reinforcement learning,
A /B testing

Machine learning
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LADDER OF CAUSATION™

Associations: P(y | z) [Level 1]

Example question: Is working in academia (z) correlated
with happiness (y)?

Interventions: P(y | do(z), x) [Level 2]

Example: If Alice takes a job in industry, would she be
happier than taking one in academia?

Treatment z, outcome Y, context x

Counterfactuals: P(y,|z’,y’) [Level 3]

Example: If Alice stayed in industry (z), would Alice have
been happier, given that she took a job in academia (z')2

Counterfactual queries require different tools from
associational ones!

Questions from level | can be answered if you have
information from a higher level but not the other way
around

*J. Pearl. The seven tools of causal inference, with reflections on machine learning. Communications of the ACM 2019.



INTERVENTIONS

= Randomized controlled trials required for drug approval by FDA

= A random group given the drug is compared to a random group given the placebo

C| i n i ca I Tri a ls SCiellCG Contents ~ News ~ Careers ~ Journals ~

Preclinical FDA Review s"em
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. :{/;izi:;sg;\:\v/\ltsrls::illus Calmette-Guérin leads to a small pustule that can develop into a scar.
: Can a century-old TB vaccine steel the immune system
Drug Approved for Drug Submitted Drug Approved against the new coronavirus?

Testing in Humans for FDA Approval

By Jop de Vrieze | Mar. 23,2020, 6:25 AM

Researchers in four countries will soon start a clinical trial of an unorthodox approach to the new

https: / /www.fda.gov/drugs/development-approval-process-drugs



https://www.fda.gov/drugs/development-approval-process-drugs

WHICH RECOMMENDATION ALGORITHM IS BETTER?

A /B testing = controlled experiment = randomized controlled trials
Best scientific design for establishing causality between a change and user behavior

Is the outcome better on average for people “treated with” version A or version B2

EM

NYT Health @NYTHealth - 2h
This was the most prescribed drug in the U.S. in 2015, But does it
work?nytl.ms/2pLZ84n

KDnuggets Gkdnuggets - 2n
The atest The KDnuggets Observer! paper i/kanuggets/1471... &
#kdn

Jason Nazar & @jasonnazar - Feb 7
The Gender Pay Gap: See how much Women vs Men get paid in T|
Thousands of real salaries by gender on @Comparably

Real Tech Salaries by Gender
comparably.com
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Jen Golbeck & Gjengolbeck - 2h
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* Your Tired, Your Poor, Your Norwegians

Only

Victoria Beckham Draws Uproar Over
Superthin Model in Ad Campaign

Airbrushing Meets the #MeToo Movement.
Guess Who Wins.

LETTERS
When Hospice Care Falls Short

Boko Haram Video s Said to Show
Captured Girls From Chibok

An Old New York Taste by Way of Vermont

" Indonesian Stock Exchange Balcony
Collapses, Injuring Scores

‘Coywolf’ Sightings Grip a Rural New York
Community

LETTER
Trump’s Greatest Legacy

Review: ‘Undesirable Elements,’
Documentary Theater for Uncivil Times

9

BROBETE ™

5%

.
3 o
3% —
Control
Most Popular

Moored in a Fragile Paradise

Peter Beard, Wildlife Photographer on
the Wild Side, Dies at 82

A Deep-Diving Sub. A Deadly Fire. And
Russia’s Secret Undersea Agenda.

Opinion: Protesting for the Freedom to
Catch the Coronavirus

Harry and Meghan Cut Off UK.
Tabloids

Brian Dennehy, Tony Award-Winning
Actor, Dies at 81

Apple, in a Virtual Unveiling,
Introduces a $399 iPhone

ATE = E[Y(Z1)] = E[Y (Zo)]



INTERVENTIONS NOT ALWAYS POSSIBLE

Ethical concerns Too expensive Immutable characteristics
&he New York Eimes
OKCupid Plays With Love in User e e s (MOOS YAUL|

Experiments

back by popular demand:

River Expeditions

A Rush of Adrenaline in the Great Outdd
Whitewater Rafting and Camping Trip

f@y»l]la?

purchased

want this deal for freel

details

Immerse yourself in a wild adventure through some of the most breathtaking
scenery in the region as you take on the rapids rolling through West Virginia's New
River Gorge National Park, also known as "the Grand Canyon of the East:" related categorles

/sports & fitness 93\‘ (ad\'enture sports 7
\ 0, v

= $69 ($140 value) for a two-night rafting trip for one (valid Monday to Friday)
« Includes one day of rafting, two nights of camping, breakfast, and beverages < 3
« You also get round-trip river transportation (gyms 4 )

Mingling at an event in Manhattan sponsored by OKCupid, which on Monday
published the results of three experiments. Yana Paskova for The New York Times



STRUCTURAL CAUSAL MODELS (SCM)

X=fx(Ux); Z=f7(X,Uz); Y=Fy(X,Z,Uy)
be Graph G
SCM describes how nature assigns values to variables of interest

Variables: U (exogenous) and V (endogenous)

Functions: assign each variable in V a value based on other variables

VA Y

Direct cause: X is direct cause of Y if X is in the function assigning Y

Cause: X is a cause of Y if it is a direct cause of Y or of any cause of Y

Graphical causal model: nodes represent variables, edges represent P(Y =y|do(Z = z)) =7
functional dependences

Also referred to as graph or graphical model or causal diagram
Causal model under intervention

X Graph G/},

Allows us to reason about exchangeability through d-separation

Do-calculus: Provides rules for estimating causal effects from
observational data when identification possible, given an SCM

Works even when some variables are latent / & Y

Pearl. Causality: Models, Reasoning and Inference. 2009.



BACKDOOR CRITERION

Graph G/
A common rule for deriving a valid causal estimand and W (unobserved)
an estimate from observational data whenever possible X
VA Y
Given an ordered pair of variables (Z, Y) in a directed acyclic graph G,
a set of variables X satisfies the backdoor criterion relative to (Z, Y) if no P(Y = yldo(Z = z)) =
node in X is a descendant of Z, and X blocks every path between Z and Z P(Y =y|Z=2X=x)P(X = x)
Y that contains an arrow into Z ~
P(Y = y|do(Z = 7) = ZP(Y —y1Z=2X = X)P(X = x) X Graph G2

X
_ZP(Y:y,Zzz,sz)

)P(Z =z|X =x) | 7 Y

The adjustment formula is “controlling” for X P(Y =y|do(Z = 2)) =P(Y = y|Z = 2)

propensity score



CAUSAL INFERENCE ENGINE

Based on do-calculus rules
e.g., P(yvldo(tv)) — P(yvltv)

If Mia read Flo’s tweets, would she

Inputs Outputs
have vaccinated herself?
Estimand
Query (Recipe for —= Eg

answering the query)

"
! i ‘ I (Graphical model) (Answer to query)

Assumptions Estimate . ES
Data Fit Indices — [
Mia 50 F Asian 2 ... No
Flo 34 F Black 2 ... Yes
LotusOak 42 F White Yes ... No

Pearl. The Seven Tools of Causal Inference with Reflections on Machine Learning. 2019.



CAUSAL EFFECTS IN NETWORKS




CAUSAL ESTIMANDS UNDER INTERFERENCE

i=1 ’ ni:5

z.=0

®z=1

Start with simplifying assumptions:

Multiple non-overlapping groups

Partial interference: interference i=3, n=3
occurs within but not across groups =2, n=6

i:5, ni:7
Treatment assignment within each
group has treatment regime
P(Z=1)= vy
i:4, ni:5

Halloran, Struchiner. Causal inference in infectious diseases. Epidemiology 1995.
Hudgens, Halloran. Toward causal inference with interference. JASA 2008.



DIRECT CAUSAL EFFECT

Individual Direct Causal Effect (DCE): the difference in"outcome due to the trecitment alone

e.g., effect of getting vaccinated on getting sick

CE;; (zi(j)) = Yij (Zi(j) 2ij = 0) — Yij (Zi(jy, zij = 1)

z;; : treatment assignment of  z;: treatment assignment
units in j’'s group i of unit j in group i

Individual Avg. DCE: difference of expected values of the marginal distributions under
treatment regime 1 of group i ﬁg(w) = Yij 0; ¥) — Yij(l; W)

Group Avg. DCE: CEP(¥) = Yi(0;v¥) — Yi(L;¥) = Y7 CER(W)/n; % Peers % Peers
. . - _ JJ; _J Vaccinated Sick
Population Avg. DCE: CEP(y) = Y(0;¥) — Y(1;9) =i, CEP(y)/N ¢
Halloran, Struchiner. Causal inference in infectious diseases. Epidemiology 1995. . ¢ ]
Vaccinated Sick

Hudgens, Halloran. Toward causal inference with interference. JASA 2008.



INDIRECT/PEER EFFECT

Individual indirect causal effect (ICE): the effect of the treatment received by others in the

group on dn individual outcome z;; : treatment assignment of z;: freatment
e.g., effect of % vaccinated people on getting sick unit i’s neighbors (group j) assignment of unit i

I / — VA7 1\ 7. —0)— V. (7 f
CEij (Zi(j)a Zi(j)) =T, (Zl(])’ Lij = O) Y; (Zi(j)’ Lij = O)
Individual Avg. ICE: difference of expected values of the marginal distributions under two
different treatment rIegimes Y and ¢ of group i @II] (@, V) = Yij 0; ) — 7ij 0; )
Group Avg. ICE: CE; (¢, V) = Yi(0;¢) — Y;(0;9) = Y| CE[($, ¥)/n

. 7 _ % Peers % Peers
Population Avg. ICE: CE' (¢, V) =Y (0; ¢) — Vaccinated Sick
_ _ °
Y(0;9) =Y, CE[($,¥)/N
®

Halloran, Struchiner. Causal inference in infectious diseases. Epidemiology 1995. V nated ]
Hudgens, Halloran. Toward causal inference with interference. JASA 2008. accinate Sick



TOTAL EFFECT

Individual total causal effect (TCE): both direct and indirect effect of treatment assignment

e.g., effect of % vaccinated people and getting vaccinated on getting sick

I . — V. A7\ 7. —(0) —
CL;; (ZZ(J)’ Zi(j)) = ¥ (Zl(])’ZlJ = O) Yij ( Z;(j) < 1)
Individual Avg. TCE: difference of expected values of the marginal distributions under two

different treatment regimes 0; 1 and 1; ¢ of group i CET (P, V) = Y,] 0; ) — lj(l V)
Group Avg. TCE: CE[ (¢, ) =Y:(0;¢) — Yi(1;9) = X°iL, CE[(¢,¥)/ni

Population Avg. ICE: % Peers % Peers
——7 = s N =T Vaccinated Sick
CE" (¢, ¥)=Y(0;9) =Y (1;¢) =) ., CE; (¢, ¥)/N .

Halloran, Struchiner. Causal inference in infectious diseases. Epidemiology 1995. Vaccina?ed Sick

Hudgens, Halloran. Toward causal inference with interference. JASA 2008.



TOTAL EFFECT:
ALTERNATIVE ESTIMAND

Total treatment effect (TTE): both direct and indirect effect of treatment assignment

e.g., effect of vaccinating everyone

vS.

TTE = — 3 (0i.Y (Z1) - v..Y (Zo))

v; €V
Applications: recommender systems

% Peers Engaged

New news feed algorithm <1
Engagement

Ugander, Karrer, Backstrom, Kleinberg. Graph cluster randomization: Network exposure to multiple universes. KDD 201 3.



INTERVENTIONS AND

NETWORK EXPERIMENT DESIGN




RANDOMIZATION IN NETWORKS

Network experiment design:

Design for randomized controlled
trials that take into consideration
interactions and potential interference
between units of interest

Randomization at the node level

High variance of estimators

Need additional assumptions

The choice of randomization design depends on the causal effect of interest!



NETWORK EXPERIMENT DESIGN

Early network experiments in 1940s were performed in labs at a small scale

Leavitt: solve a data collation task using only one of four randomly assigned communication patterns

(Circle), (Chain), (Y), (Wheel)

“The Circle was erratic, active (message-wise), unorganized, and leaderless, but satisfying to its members.
The Wheel was less erratic, required few messages, was well organized, and had a definite leader, but
was less satisfying to most of its members”

H. Leavitt. Some effects of certain communication patterns on group performance. The Journal of Abnormal and Social Psychology, 46(1): 38. 1951.



NETWORK EXPERIMENT DESIGN

Network experiments nowadays are often large-scale and use digital platforms with millions of users

facebook AT 4

LinkedﬁO Can peers influence voter turnout? [Bond et
al. 2012]

28

Snapchat

slack

Can product endorsements from friends
increase ad clicks? [Bakshy et al. 2012]

Can emotional states be transferred via

'. A .'7._.;;;"-": | contagion? [Kramer et al 2014]
YoulllTH) o Jnstagram

d': "flickr

TikTok

S. Aral. Networked Experiments. The Oxford Handbook of the Economics of Networks. 201 6.



TWO-STAGE RANDOMIZATION DESIGN UNDER
PARTIAL INTERFERENCE 5=

v =0.5 Z..—

Two-stage randomization Y =0.5 .
6 = 0.7 @ z—

Assign groups to treatment and control with prob. v

For each group i: S =1 S3=1
If group in treatment (S;=1), assign each unit to 2 $.=0
treatment with probability 1 S
Else group in control (S,=0), assign each unit to
treatment with probability 0
E.g., Group Average Direct Causal Effect estimator S,=0

: Yalod 1sni (v v
Estimand CELD(‘(/)) = n—iz;l:l (YLJ(O' lp) — Yl](l,lp))
nbiase — Zni Yi'(Zi)I[Zi'=O] anl Yij(Z)I[Zij=1]
:s'rl':)mq'roc:l CElD (1/)) == zl:nij I[Z--—OJ] - zl:ni] I[Z"—lj]
j=1 ij= j=1 =

Hudgens, Halloran. Toward causal inference with interference. JASA 2008.



INSULATED NEIGHBOR RANDOMIZATION DESIGN
FOR K-LEVEL PEER EFFECT ESTIMATION

A potential outcome is defined based on the treatment assignment of neighbors

K-level treatment: a node is k-exposed to peer influence effects if exactly k of its neighbors are
treated

Outcome when k Outcome when neither .
Estimand for k-level peer effects: neighbors are treated  ego nor neighbors are ,’/
1 n. =1 but ego is not  treated ,/Q"‘\y,l\_\o
— t : _ : / ’,0\\ \\O:\\ =
O = A E 7 E Yi(0,z) — Y;(0) | O(?/O )
1€V, z€Z(Ni;k) ©~®

Vi: nodes with = k neighbors  possible combinations with exactly k treated neighbors

INR Design: nodes from V, are sequentially assigned to either be k-exposed or 0-exposed

Estimator bias depends on network topology and whether shared neighbors are as influential as non-shared ones

P. Toulis, E. Kao. Estimation of Causal Peer Influence Effects. ICML 201 3.



MECHANISM AND ENCOURAGEMENT DESIGNS FOR
PEER EFFECT ESTIMATION Mocharism desir

& E.M, Treatment

-i A

Randomizing peer behavior is not always realistic

Mechanism designs: modulate the mechanism by
which information about peer behavior is transmitted

Encouragement designs: measure peer effects of

. o . All hani bled
behaviors not directly controlled by the experimenter mechanisms enavie
Ego Ego Name w, ©em, Control
t J !
Goal: Estimate effects > | Text (or other content) of post n,
of receiving feedback Feedback summary y
by i
on how many posts Like Comment ifg5 W1 59 minutes ago
egos make and how o il 5 people like this.
Existing

much feed bCICk ’rhey feedback oA Prev. Commenter Name Comment text

. ’ 57 minutes ago  Like
give on others’ posts
Comment{ P | | Write a comment...

textbox All mechanisms disabled

D. Eckles, R. Kizilcec, E. Bakshy. Estimating peer effects in networks with peer encouragement designs. PNAS 201 6.



CLUSTER-BASED RANDOMIZATION DESIGNS FOR
TOTAL TREATMENT EFFECT ESTIMATION

Design for estimating total treatment effect
Assumes partial interference: interference can occur within clusters but not across clusters

Minimizes spillover between treatment and control

Estimand of interest:
1
= Ze;/(vi.Y(Zl) — ;.Y (Zo))

Horvitz-Thompson Estimator:

Pr(Z € o}) Pr(Z € oY)

Hz)= L3 (1@-(2)1[26@] Yi(Z2)1[Z € o} )

Ugander, Karrer, Backstrom, Kleinberg. Graph cluster randomization: Network exposure to multiple universes. KDD 201 3.



CHALLENGES WITH CLUSTER-BASED RANDOMIZATION

Challenge 1*: It can be hard to separate a real-world network into treatment and control clusters
without leaving a lot of edges across
E.g., LinkedIn graph clustering has 65-79% of inter-cluster edges™*

Ideal network Online social networks

*Z. Fatemi, E. Zheleva. Minimizing interference and selection bias in network experiment design. ICWSM 2020.
**Saveski, Pouget-Abadie, Saint-Jacques, Duan, Ghosh, Xu, Airoldi. Detecting network effects: Randomizing over randomized experiments. KDD 2017.



CHALLENGES WITH CLUSTER-BASED
RANDOMIZATION

Challenge 2: Treatment and control clusters can have different covariate distributions

Tradeoff between interference and selection bias based on number of clusters

, , number of clusters
selection bias i

2
0.40 A x

X Clustered
* Randomized

0.35 4

0.30 4

0.25 4

Euclidean distance between
treatment and control nodes

b3
0.20 A )E,oo 800

2708
x *

0.15 4

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

interference bias

Z. Fatemi, E. Zheleva. Minimizing interference and selection bias in network experiment design. ICWSM 2020.



CMATCH: CLUSTER-BASED RANDOMIZATION WITH
CLUSTER MATCHING ON A WEIGHTED GRAPH

Input CMatch Output

ﬂrandomizing over
matched clusters
Treatment

treatment and control nodes _
with identically distributed
attributes to deal with
Challenge 2

minimizing interference bias
through weighted graph
clustering to deal with
Challenge 1

1
T L= N Z (v:.Y(Z1) — v5.Y (Zo))

v; €V

Z. Fatemi, E. Zheleva. Minimizing interference and selection bias in network experiment design. ICWSM 2020.
|

Stuart. Matching methods for causal inference: a review and look forward. Stat. Science 2010.



TWO-SIDED RANDOMIZATION FOR
BIPARTITE GRAPH EXPERIMENTS

Two-sided markets
Lower bias than customer randomization or listing randomization alone

Customers Listings Bias goes to zero as relative demand goes to zero or infinity

J
'

p

Interference due to competition:
- Making one listing more attractive makes others less attractive
- Making one customer more likely to book reduces supply for other customers

a

>20 P

' Z.=0 Control 1 Control 2

Zc=1 Control 3 Treatment

R. Johari, H. Li, I. Liskovic, G. Weintraub. Experimental design in two-sided platforms: An analysis of bias. Arxiv 2020.
P. Bajari, B. Burdick, G. Imbens, J. McQueen, T. Richardson, |. Rosen. Multiple randomization designs for interference. ASSA Annual Meeting 2020.



’ |
Counterfactuals & causal effects in observational data /R 4 .
Representation, identification, estimation . Y e 5 \. s
Blocks .~ v
. ¢ ©
\ ‘ o’ \
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COUNTERFACTUALS & CAUSAL EFFECTS
IN OBSERVATIONAL NETWORK DATA ~ Blocks



REPRESENTATION: GRAPHICAL MODELS

Blocks Chain and segregated graphs Abstract ground graphs
Assume partial interference Can model more complex interference
1 02 = 03
C, Ai > Y, U?. Prv
A1 A % % >
G AJ' 1 U?.ToS Ul ToS U°.ToS
Y1 Y2 © Y3

C-covariates A-treatment Y-outcome



BLOCKS FOR DIRECT INTERFERENCE

Blocks: repeatable patterns of interference

Direct interference: treatments of peers/neighbors affect ego’s outcome

Exchangeability holds and the effect of A on Y, is identifiable:
C; blocks the backdoor paths™ from A; to Y; and from A to Y;

P(Y; = yldo(4; = a;, A; = @) =

EP(Yi = y|Ai =a;,4j =a;,( = Ci)P(Ci = ¢;)
=

l

*A set of variables C satisfies the backdoor criterion relative to (A, Y) if no node in Cis a
descendant of A, and C blocks every path between A and Y that contains an arrow into A

C-covariates A-treatment Y-outcome

Ogburn, VanderWeele. Causal Diagrams for Interference. Statistical Science 2014.



BLOCKS FOR DIRECT INTERFERENCE

Identification of E[Y;|do(A = a,)] — E[Y;|do(A = a,)] depends on the causal graph
(domain knowledge) and which variables are available in the data

C-unit covariates

A-treatment
Y-outcome

D-common covariates

h(C)-function of C

*A set of variables C satisfies the
backdoor criterion relative to (A, Y) if
no node in Cis a descendant of A,

and C blocks every path between A
and Y that contains an arrow into A

Ogburn, VanderWeele. Causal Diagrams for Interference. Statistical Science 2014.



IDENTIFYING CONTAGION

Contagion E[Yi,t|d0(Yj,t_1 = yl)] — E[Yi,t|d0(Yj,t_1 = 3’1)] may not be identifiable
due to latent homophily

Z(i)\ X(1) X(Q) /Z(j)
A(1,)) Y(j.t-1)
Y(1,1) Y(.H)
Symbol Meaning
1,7 Individuals
7 Observed Traits
X Latent Traits
Y Observed Outcomes

A Network Tie
Shalizi & Thomas. Homophily and Contagion Are Generically Confounded in Observational Social Network Studies. Sociological Methods & Research 2011.

Y@G.0




EXAMPLE: LINEAR THRESHOLD MODEL

Linear threshold model (LTM) Ib = Z T A
Model of information diffusion in social networks uwe N

If a proportion of an individual’s friends that have activated
(e.g., adopted a ‘oroduc’r) are above a threshold 0, then
that individual will activate features

Heterogeneous peer effects @ e e e ,@
. / . P

Friends'’ Influence of friends’ activation states

px)=EY(I'=)-YI'=i") | X =x,7Z = 7]
|dentifiable in LTM according to SCM SRR 0. X ‘ <

U <,
Individual-level threshold estimation N >
Find minimum threshold that would cause a node to activate I
. ¢ N ¢ A _ )
Px)=EYI">0)-Y(I" <) | X =x] Individual v’s

Two models: trigger-based causal trees and ST-learner features Individual Vv's activation states over time

Tran & Zheleva. Heterogeneous Peer Effects in the Linear Threshold Model. AAAI 2022.



Presenters: AAAIl 2022 Tutorial

Elena Zheleva, University of lllinois Chicago w@elenadata @ February 23, 2022
David Arbour, Adobe Research w@darbour26 F.\\ Adobe'  https://netcause.github.io
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How do we get
people to vote?




n Good job! Were the lines
longs?
~—




WHAT'S THE EFFECT?




’
!
\

Last Name

First Name

DOB

State

Voted (Y /N)

OBSERVED DATA







CHALLENGES

e — HH'ﬁﬂ”
C, > A > Y n ' B

EEAA R

>< ’W',« f

Cj\“ff_/’vj ERERES

Causal Network



ﬂ CASUAL CHALLENGES

/_\
C. A .Y, 1. Feedback
G > A > Y] Set Valued
\_’/ 2.

Counterfactuals



FEEDBACK
( N[ 3

0 img

Q 0),
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Pooled Data
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SET VALUED COUNTERFACTUALS
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2/3 Treated

SET VALUED COUNTERFACTUALS






CHALLENGES

e — HH'ﬁﬂ”
C, > A > Y n ' B

EEAA R
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Cj\“ff_/’vj ERERES

Causal Network



NETWORK CHALLENGES

] Directed /
* Undirected Edges




UNDIRECTED RELATIONSHIPS




UNDIRECTED RELATIONSHIPS




DIRECTED RELATIONSHIPS




DIRECTED RELATIONSHIPS
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NETWORK CHALLENGES

2 Multiple Entities &
. Relationships
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NETWORK CHALLENGES

2 Unobserved /
° Partially Observed
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Chain Graphs

Aggregate
Ground Graphs

Directed & Multiple Partially
Undirected Entities and Observed
Edges Relationships Networks

v
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ACYCLICITY
( [ 3

0 img

Q 0),




FEEDBACK
( [ 3

0 img

Q 0),




X
¥

]
A

Ogburn, Shpitser and Lee. Causal inference, social networks and chain graphs. JRSSB 2020.




X
»‘

I
M

Ogburn, Shpitser and Lee. Causal inference, social networks and chain graphs. JRSSB 2020.




Latent
° Q edges

Ogburn, Shpitser and Lee. Causal inference, social networks and chain graphs. JRSSB 2020.



non causal

° Q undirected
edges
o (&)

Ogburn, Shpitser and Lee. Causal inference, social networks and chain graphs. JRSSB 2020. c H A I N G R A P H S

Lauritzen & Richardson. Chain Graph Models and Their Causal Interpretation. JRSSB. 2002.




WHY DEPENDENCE-AWARE MODELING?'

Bias of Non-Interference Modeling (Erdos—Renyi)

Cp, — Co — (3

} ‘ " Ay A As

Y =

o
D

Bias from True Effect

o
w

0.01

0.25 0.50 0.75
Density

Lee & Ogburn. Network Dependence Can Lead to Spurious Associations and Invalid Inference. Journal of American Statistical Association. 2020.

Sherman, Arbour, and Shpitser. General Identification of Dynamic Treatment Regimes Under Interference. AISTATS. 2020.



CHAIN GRAPHS

Undirected edges represent stable equilibrium
between 2+ edges

‘DAG of blocks’ with 2-level factorization

V «— fv(B(V), pag(B(V)) ev)
p(V)= I #®lpas®) = [] zpogy 1T ¢c©

BeB(G) BeB(G) Cec

Lauritzen & Richardson. Chain Graph Models and Their Causal Interpretation. JRSSB. 2002.



DATA GENERATING PROCESS

Procedure 1 CG Data Generating Process

1: procedure CG-DGP(G.{fg: B e V})

2 for each block B; € B(G) do I

3 repeat

4: for each variable B; € B; do

5 Bj 5 fBj(Bi\Bjapag(Bi)vij)
6 until equilibrium

return V

Lauritzen & Richardson. Chain Graph Models and Their Causal Interpretation. JRSSB. 2002.



IDENTIFICATION

p(Ve(@) = ][ »B\A|pag(B),BNA)a-a
BeB(G)

p(Vp(a)) = H p(V]pag(V))|a=a 1 F— Cz — Cs
VeVp\A

Y1—Y2—Y3

Lauritzen & Richardson. Chain Graph Models and Their Causal Interpretation. JRSSB. 2002.



HANDLING LATENT VARIABLES
£ N v~ N\

A—>Y A—M—7Y

Acyclic Directed Mixed Graphs (ADMGs) — latent projection DAGs
Aa B means A and B share a common cause

Markov Kernels

ADMGs factorize as product of densities that relate district
variables’

p(V)= ]| ap(D|pag(D)),

DeD(G)

Richardson. Markov Properties for Acyclic Directed Mixed Graphs. Scandinavian Journal of Statistics. 2002. 1: COMPARE TO DAGS , WHICH FACTORIZE ACCORDING TO UNIVARIATE CONDITIONALS



THE ID ALGORITHM

Fixing
Truncated factorization provided notion of ‘fixing’ a variable in a DAG

Corresponding notion in ADMGs — yields conditional ADMG (CADMG)
Reframe Pearl’s ‘graph surgery’ via fixing operator

.

ov(9) ov(q;9)

Richardson, Robins and Shpitser. Nested Markov Properties for Acyclic Directed Mixed Graphs. UAI. 2012.



HANDLING LATENTS IN CHAIN GRAPHS

Segregation Property
Do not permit &d and - edge at the same node

No known likelihood to support violations

Block-safeness
Enforces segregation property in underlying chain graph

Block-safe CGs can undergo latent projection operation to yield
segregated graph

Shpitser. Segregated Graphs and Marginals of Chain Graph Models. NeurlPS. 201 5.



THE ID ALGORITHM

For any disjoint subsets Y, A of V in a latent projection G(V) representing a causal DAG G(VUH),
define Y* = ang(v),, o (Y). Then p(Y|do(a)) is identified in G if and only if every set D €

D(G(V)y~+) is reachable (in fact, intrinsic). Moreover, if identification holds, we have [16]:

p(Yl|do(a)) = ) II  ¢vin®(V);iG(V))laza. (2)

Richardson, Robins and Shpitser. Nested Markov Properties for Acyclic Directed Mixed Graphs. UAI. 2012.



THE ID ALGORITHM

Y’s ancestors are the only thing that is relevant for identifying effects on Y

define Y* = ang(v),, . (Y).

Richardson, Robins and Shpitser. Nested Markov Properties for Acyclic Directed Mixed Graphs. UAI. 2012.



THE ID ALGORITHM

Then p(Y|do(a)) is identified in G if and only if every set D €

D(G(V)y-) is reachable (in fact, intrinsic).

Algorithm is complete
Intuition: need to ‘identify’ (reach) each district

Richardson, Robins and Shpitser. Nested Markov Properties for Acyclic Directed Mixed Graphs. UAI. 2012.



THE ID ALGORITHM

Moreover, if identification holds, we have [16]:

p(Yldo(@) = > J] ¢vio(®@(V);G(V))laza. 2)

Y*\Y DeED(G(V)y=*)

Marginalize

p(Vo@) = [[ »(VIpag(V))la=a
VeEVp\A

Richardson, Robins and Shpitser. Nested Markov Properties for Acyclic Directed Mixed Graphs. UAI. 2012.



THE ID ALGORITHM

Moreover, if identification holds, we have [16]:

p(Y|do(a)) = 11

Y*\YIDeED(G(V)vyx*)

¢v\p(P(V); G(V))|A=a.

2)

Richardson, Robins and Shpitser. Nested Markov Properties for Acyclic Directed Mixed Graphs. UAI. 2012.

11 \p(w pag(V))|a=a
VEVD\




HANDLING LATENTS IN CHAIN GRAPHS

Segregation Property
Do not permit &d and - edge at the same node

No known likelihood to support violations

Block-safeness
Enforces segregation property in underlying chain graph

Block-safe CGs can undergo latent projection operation to yield
segregated graph

Shpitser. Segregated Graphs and Marginals of Chain Graph Models. NeurlPS. 201 5.



HANDLING LATENTS IN CHAIN GRAPHS

Factorization-Blocks and districts

Conditional Chain Graph
q(B*| PaE(B*)) — HBeBnt(g) p(B|pag(B))

CADMG

*]nas (TAF)Y ()
¢(D*|pag(D*)) = & paz )

Shpitser. Segregated Graphs and Marginals of Chain Graph Models. NeurlPS. 201 5.



THE SEGREGATED GRAPH ID ALGORITHM

Theorem 2 Assume G(V U H) is a causal CG, where H is block-safe. Fix disjoint subsets Y , A of
V. Let Y* = antg(v),, , Y. Then p(Y|do(a)) is identified from p(V) if and only if every element

in D(G?) is reachable in G%, where G% is the induced CADMG of G(V )y
Moreover, if p(Y |do(a)) is identified, it is equal to

> 11 ¢D*\D(Q(D*|pag(V)(D*))§gd)] l [[ »®B\Alpagw,,. ([B),BNA)
Y*\Y [DeD(G?) BeB(GY)
where q(D*| pagvy(D*)) = p(V)/(HBeBnt(g(V)) p(B|pagn(B)), and GY is the induced CCG

A=a

p(Yldo@) = > ]  ¢vip®(V):G(V))|aza. p(Ve(@) = J] »(B\A|pag(B),BNA)a-a
BeB(9)

Y*\Y DeD(G(V)y=*)

Shpitser. Segregated Graphs and Marginals of Chain Graph Models. NeurIPS. 201 5.
Sherman & Shpitser. Identification of Causal Effects from Dependent Data. NeurlPS. 201 8.



GENERALIZING NODE INTERVENTIONS

Policy analysis
Woant to evaluate treatments ‘tailored’ to the subject
Ultimately want to perform policy optimization
Intervene with a function Fa(W 4) where w, c v_,
Pearlian ‘graph’ surgery
Remove edges into A, add edges from W to A

Sherman, Arbour, and Shpitser. General Identification of Dynamic Treatment Regimes Under Interference. AISTATS. 2020.



THE POLICY ID ALGORITHM

p(Y(fa)) is identified in G if and only if p('Y*(a)) is identified in G. If it is identified, then
p(Y(fA)) = Z H ¢V\D( < ) g)|épaé(D)ﬂA

(Y*UA)\Y DED(Gy+)

where ap,: (D)na = {A = f4a(Wa)|A € pag(D)N A} if pag(D) N A # () and a = ) otherwise.

p(Y|do(a)) = I[]  ¢vip®(V);G(V))laza.

Y*\Y DeD(G(V)y=*)

Sherman, Arbour, and Shpitser. General Identification of Dynamic Treatment Regimes Under Interference. AISTATS. 2020.



SEGREGATION-PRESERVING POLICIES

Need to assume policies maintain segregation property
Cannot induce a (partially-directed) cycle

Procedure 2 Obtaining Gg, from G

Allow for a variety of intervention types 1: procedure INTERVENEGRAPH(C, fa(Za))

Add/remove directed edge Initialize Ge, < G

for each A € A do
Modify existing (directed or undirected) edge Replace all V — A with A — V in Gg,

2

3

4

5: Remove all - — A, - <> A from Gg,

6: Add edges Z4 — A in Gg,

7 for each V;,V; € V do

8 if V; = V; and V; = V; in G, then

9 Remove V; — V; and V; — V; from Gg,
0 Add V; — V} n ng

return Gg,

10:

Sherman, Arbour, and Shpitser. General Identification of Dynamic Treatment Regimes Under Interference. AISTATS. 2020.



POLICY ID FOR SEGREGATED GRAPHS

Theorem 1 (Let G(V U H) be a causal LV-CG with H block-safe, and a topological order <. |
| Let fa(ZA) be a segregation preserving policy set.|

g(D|paz. (D)) =[Incn (Y (fa(Zn))) is identified
in G if and only if p(Y*(a)) is identified in G for the unrestricted class of policies.||If identified, p(Y (fa(Za))) =

> | I #®ivg,®)]
{Y*UA}\Y ~BeB(G?)

X [ II ¢p-\p(a(D*|pag,, (D*)); Qd)] |

DeD(G%)

(11)

A=a

Sherman, Arbour, and Shpitser. General Identification of Dynamic Treatment Regimes Under Interference. AISTATS. 2020.



EASY

Modeling feedback

Modeling latent
variables

|dentification
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TEMPLATES

Assume shared marginal and conditional
distributions

Allows a general model which represents
relationships and dependencies more abstractly

Getoor, Friedman, Koller & Pfeffer. Learning Probabilistic Relational Models. [JCAI. 1999.



<

Employee

AN yd

/ Creates N\

Getoor, Friedman, Koller & Pfeffer. Learning Probabilistic Relational Models. [JCAI. 1999.

Product

N\

Funds

Business Unit




OVERVIEW OF TEMPLATE MODELS

Instantiate
Schema -~ Skeleton

Model - Ground Graph

Getoor, Friedman, Koller & Pfeffer. Learning Probabilistic Relational Models. [JCAI. 1999.



OVERVIEW OF TEMPLATE MODELS

Schema Skeleton

Model Ground Graph

Getoor, Friedman, Koller & Pfeffer. Learning Probabilistic Relational Models. [JCAI. 1999.



OVERVIEW OF TEMPLATE MODELS

Instantiate

Schema - Skeleton
+ dependencies
Model - Ground Graph

Getoor, Friedman, Koller & Pfeffer. Learning Probabilistic Relational Models. [JCAI. 1999.



Products an Employee
works on

Business units an
Employee works in

An employee’s

coworkers

RELATIONAL PATHS

Employee, Product]

Employee

A\ 4

[Employee, Product, Business Unit]

Employee

AN\

Product

AN
/

Employee

Product

Employee, Product, Employee]

N\ 4

Heckerman, Meek, and Killer. Probablistic Models for Relational Data. MSR Tech Report. 2004.

/\

Product

Business
> Unit
N Z
2 N Employee




An employee’s coworkers

[Employee, Product, Employee]

Creates

CI" Q Qfes

Cred‘es

employee

Creates

coworkers

Creates




D-SEPARATION ON TEMPLATES

Skill

Employee

AN
/

Maier, Marazopoulou, and Jensen. Reasoning about Independence in Probabilistic Models of Relational Data. Arxiv. 201 3.

Creates

yd
N

»
»

Product

N

Funds

»  Profit

Business Unit

Lee and Hanovar. A Characterization of Markov Equivalence Classes of Relational Causal Models under Path Semantics. UAL. 2016




UNREPRESENTABLE (56%)

REPRESENTABLE (44%)

D-separation T

0 n .I. e m p I u II. e S MARGINALLY INDEPENDENT (82%)

.

|
|
|
|

COND

o5 | IND.

| o%)

often fails

—
——
-——
—-—
——
——
—
— —
———
——
——
——
——
—
— —

-— e o= =
——
-— e ==
- —

o

Frequency of
equivalence
0.5 1

Dependencies: 5 10 1 5 10 1
Entities: 1 2

Maier, Marazopoulou, and Jensen. Reasoning about Independence in Probabilistic Models of Relational Data. Arxiv. 201 3.

Lee and Hanovar. A Characterization of Markov Equivalence Classes of Relational Causal Models under Path Semantics. UAL. 2016



e e S

o

Frequency of
equivalence
0.5

Dependencies: 5 10 1 5 10 1 5 10 1 5 10
Entities: 1 2 3 4

Maier, Marazopoulou, and Jensen. Reasoning about Independence in Probabilistic Models of Relational Data. Arxiv. 201 3.
Lee and Hanovar. A Characterization of Markov Equivalence Classes of Relational Causal Models under Path Semantics. UAL. 2016



D-SEPARATION ON TEMPLATES

/ Creates N Funds . .
Employee Product Business Unit

N

[Employee, Product, Employee].Skill || [Employee].Skill

Maier, Marazopoulou, and Jensen. Reasoning about Independence in Probabilistic Models of Relational Data. Arxiv. 201 3.
Lee and Hanovar. A Characterization of Markov Equivalence Classes of Relational Causal Models under Path Semantics. UAL. 2016
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HOW DO WE FIND AN
INTERMEDIATE
REPRESENTATION THAT



ABSTRACT GROUND GRAPHS

Lifted representation
with d-separation semantics



EMPLOYEE PERSPECTIVE | Hop threshold = 2

AN Z
/ Creates N Funds

Employee Product Business Unit

N

[Employee, Product, Employee].Skill [Employee, Product, Business Unit].Profit

Maier, Marazopoulou, and Jensen. Reasoning about Independence in Probabilistic Models of Relational Data. Arxiv. 201 3.
Lee and Hanovar. A Characterization of Markov Equivalence Classes of Relational Causal Models under Path Semantics. UAL. 2016



’ AGGS INHERIT THE PROPERTIES OF BAYES NETS

*(_ [Employee, Produc’r].SuccesD
[Employee, Product, Employee].Skill

d-separation and identification theory from Bayesian
networks can be applied directly.

[Employee, Product, Business Unit].Profit

Maier, Marazopoulou, and Jensen. Reasoning about Independence in Probabilistic Models of Relational Data. Arxiv. 201 3.
Arbour, Garant, and Jensen. Inferring Network Effects from Observational Data. KDD. 2016.



Unshielded collider

RELATIONAL
BIVARIATE
0 RI EN TATI 0 N [Employee, Product, Employee].Skill

Non-collider

[Employee, Product, Employee].Skill

Maier, Marazopoulou, Arbour, and Jensen. A Sound and Complete Algorithm for Learning Causal Models from Relational Data. UAI. 201 3.




O D

N/
VAN

Al.X,[A Bl.Y
Compare: gg%}% Y, {B,A%.X%

INFERRING DIRECTION OF RELATIONAL
DEPENDENCIES DIRECTLY



Larger

is true

N/
VAN

direction

Al.X,[A, B]

Compare: 235&3% Y {B,A |
INFERRING DIRECTION OF RELATIONAL
DEPENDENClES DlR.E-CTLY.



Sufficient

for
detecting a

latent

N/
VAN

confounder

cov([B,A]. X, [A,B].Y)
cov([B].Y, [B Al. X)

Compare: and

INFERRING DIRECTION OF RELATIONAL
DEPENDENCIES DIRECTLY



OBJECT CONDITIONING

[A]X I [ALY | [B].ID

A\/
¢

[A]X I [ALY | [B].ID

A\/
¢

RRUISH

, Burroni, and Rattigan. Object Conditioning for Causal Inference. UAIL. 2020.




OBJECT CONDITIONING

2

v Z )

F

o

O O | || ® Q.

, Burroni, and Rattigan. Object Conditioning for Causal Inference. UAIL. 2020.
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Jensen,

OBJECT CONDITIONING

o | @

® O, O}

3o,

Burroni, and Rattigan. Object Conditioning for Causal Inference. UAI. 2020.




EASY

Modeling multiple
entity and
relationships

ID for acyclic ground
graphs




INFERENCE WITHIN THE CARL FRAMEWORK

Qualification
[Author]

Prestige
[Author]
Prestige Quality
[Author] [Paper]
Score
[Paper]

Relational DB Background Knowledge Causal Query

Causal Effects(s)
Estimates

Single flat data-table

Salimi, Parikh, Kayali, Getoor, Roy, and Suciu. Causal Relational Learning. SIGMOD. 2020. Content provided by Sudeepa Roy



4 Background \

Skeleton Relational DB Knowledge Causal Query

Traversal

(L
O
o

O

y N )

Grounding Grounded Causal DAG

|

i
Confounder
|dentification

|

;

Flat Tabl

Summary i 2/ ’

. Summary-Prestige Summary-Qualification Score Quantity
Functions ; < e P—

; Gorosie Prestige[As,Ac]) ge.s( Qualification[A+,Ac] ) core[>1] | Quantity[S1]
Causal : P Score[S2] | Quantity[S2]
inf gpresﬁge(Prestlge[A1,Az,As]) gqua.(Quallflcatlon[A1,Az,As])
nference

Salimi, Parikh, Kayali, Getoor, Roy, and Suciu. Causal Relational Learning. SIGMOD. 2020. Content provided by Sudeepa Roy



REPRESENTING CYCLES IN
TEMPLATED CAUSAL MODELS
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Ahsan, Arbour, and Zheleva. Relational Causal Models with Cycles: Representation and Reasoning. CLEAR. 2022 (to appear).



Alice.Sentiment

~—r.
,(I’Z—]Enga_ge@
\

P1.Engagement

Bob.Sentiment

M1 .Preference

Ahsan, Arbour, and Zheleva. Relational Causal Models with Cycles: Representation and Reasoning. CLEAR. 2022 (to appear).



Definition 2 (o-separation) (Forré and Mooij, 2017)
A walk (vg...v,) in DCG G = (V, &) is o-blocked by C C V' if:

1. its first node vy € C or its last node v,, € C, or
2. it contains a collider v, ¢ ANg(C), or

3. it contains a non-collider v;, € C that points to a node on the walk in another strongly
connected component (i.e., Vi,_1 — Vg — Vg1 With v, & SCg(Vg), Vk—1 < Uk ¢ Vgi1
with vi_1 ¢ SCg(vg) or vg_1 < v — Vg1 Withvi_1 & SCg(vg) or vgy1 ¢ SCg(vg)).

If all paths in G between any node in set A C 'V and any node in set B C V are o-blocked by a set
C C YV, we say that A is o-separated from B by C, and we write A_l B|C.
g

Ahsan, Arbour, and Zheleva. Relational Causal Models with Cycles: Representation and Reasoning. CLEAR. 2022 (to appear).



Definition 6 (Relational o-separation) Let X, Y, and Z be three distinct sets of relational vari-
ables with the same perspective B € € U 'R defined over relational schema S. Then, for relational
model structure M, X andY are o-separated by Z if and only if, for all skeletons s € > 5, X|
and Y |y are o-separated by Z |, in ground graph GG, for all instances b € s(B) where s(B)
refers to the instances of B in skeleton s.

Ahsan, Arbour, and Zheleva. Relational Causal Models with Cycles: Representation and Reasoning. CLEAR. 2022 (to appear).
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Definition 7 (c-Abstract Ground Graph) An abstract ground graph o-AGGn = (V, E) for re-
lational model structure M = (S, D), perspective B € € U R, and hop threshold h € N° is a
directed graph that abstracts the dependencies D for all ground graphs GG rq,, where s € ) .
The 0-AGG A4, is a directed cyclic graph with the following nodes and edges:

1. V=RV UIV, where

(a) RV is the set of relational variables with a path of length at most h + 1.

(b) 1V are intersection variables between pairs of relational variables that could intersect
2. E = RVEUIVE, where

(a) RVE C RV x RV are the relational variable edges

(b) IVE C (IV x RV)U (RV x IV) are the intersection variable edges. This is the set of

edges that intersection variables “inherit” from the relational variables that they were
created from

Ahsan, Arbour, and Zheleva. Relational Causal Models with Cycles: Representation and Reasoning. CLEAR. 2022 (to appear).
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Definition 6 (Relational o-separation) Let X, Y, and Z be three distinct sets of relational vari-
ables with the same perspective B € € U R defined over relational schema S. Then, for relational
model structure M, X andY are o-separated by Z if and only if, for all skeletons s € )5, X|p
and Y |, are o-separated by Z |y, in ground graph GG, for all instances b € s(B) where s(B)
refers to the instances of B in skeleton s.
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Definition 8 (Relational o-separation Markov Condition) Let X,Y, Z be relational variables
for perspective B € € U R defined over relational schema S. For any solution (X, €) of a re-
lational model M which follows a simple SCM,

XJI_Y|Z — Xx 1 Xy|Xz, ifandonlyif
P (X)

z I ylz = X, AU X|X], forVz e X|y, VyeY|y, Vze Z|
GG M IP’GGM(X')

in ground graph GG\, for all skeletons s € Y ¢ and for all b € s(B) where (X', €’) refers to the
solution of the SCM corresponding to the ground graphs.

Ahsan, Arbour, and Zheleva. Relational Causal Models with Cycles: Representation and Reasoning. CLEAR. 2022 (to appear).
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Modeling multiple
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Representation of
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DISCOVERING Assume: CCI.US?Il structure is
JAFNOLTYE <nown a priori

STRUCTURE
OF CHAIN GRAPHS Learn: The relational structure

der interference and network uncertainty. UAI, 2019.



DISCOVERING RELATIONAL STRUCTURE

Assume: Causal graph is known

Learn: Greedily search for the relational structure that

maximizes the pseudo-likelihood
n d

PL(D; G) zl “ lp(xj,i | %_j 5 G)

i=1 j=1

Bhattacharya, Malinksy, and Shpitser. Causal inference under interference and network uncertainty. UAI, 2019.



Algorithm 1 GREEDY NETWORK SEARCH(G™!, D)

&)

g* y. ginit
score change < True
while score change do
score change «— False
Exr + network ties in G*
Emas ¢ argmaxgege. PBIC(D; G* \ E)
if PBIC(D; G* \ E,,q2) > PBIC(D; G*) then
G+~ G*\ Enaz > deleting edge E,, 4.
score change < True
: return &3,

&)

&)
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)
=<
S

Bhattacharya, Malinksy, and Shpitser. Causal inference under interference and network uncertainty. UAI, 2019.
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Err — argmaxpee:. PBIC(D;G* \ E)
if PBIC(D; G* \ E,,qaz) > PBIC(D; G*) then
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score change < True
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Algorithm 1 GREEDY NETWORK SEARCH(G™!, D)

&)

1: g* y- ginit

2: score change < True

3: while score change do

score change < False

Exr « network ties in G*

Ermaq < argmaxpees PBIC(D;G* \ E)

if PBIC(D; G™ \ Eynaz) > PBIC(D; G™) then

G* +— G\ Enaz > deleting edge F,,qx

9: score change < True

10: return £},
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Algorithm 1 GREEDY NETWORK SEARCH(G™!, D)
@ ;@ 1: G* « (init
| 2: score change < True
' 3: while score change do
@ =6[(> 4: score change «— False
| 5: Exr < network ties in G*
6: Erpor — argmaxpee:. PBIC(D;G* \ E)
@ {b)r i if PBIC(D; G* \ E,,qaz) > PBIC(D; G*) then
| 8: G+~ G*\ Enaz > deleting edge E,, 4z
9: score change < True
@ =® 10: return £},
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Algorithm 1 GREEDY NETWORK SEARCH(G™!, D)

)
) 4

)

OO,

0:
10: return 8}(,

1: g* s glmt
2: score change < True
3: while score change do

score change < False

Exr « network ties in G*

Ermae  argmaxpee: PBIC(D; G \ E)

if PBIC(D; G™ \ Eynaz) > PBIC(D; G™) then
G* +— G\ Enaz > deleting edge E,,qx
score change < True
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Algorithm 1 GREEDY NETWORK SEARCH(G™!, D)
@ ;@ 1: G* « @init
! 2: score change < True
3: while score change do
@ =® 4: score change «— False
5: Exr < network ties in G*
6: Emaq < argmaxpce. PBIC(D; G* \ F)
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| 8: G+~ G*\ Enaz > deleting edge E,, 4z
9: score change < True
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Algorithm 1 GREEDY NETWORK SEARCH(G™!, D)
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) 4

g* y. ginit
score change < True
while score change do
score change «— False
Exr < network ties in G*
Ermae < argmaxpee: PBIC(D; G* \ E)
if PBIC(D; G* \ E,,qaz) > PBIC(D; G*) then
G+~ G*\ Enaz > deleting edge E,, 4.
score change < True
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return £,
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DISCOVERING RELATIONAL STRUCTURE

Can additionally search over Consistent assuming true
heterogenous relationship distribution is in the curved
types exponential family

Bhattacharya, Malinksy, and Shpitser. Causal inference under interference and network uncertainty. UAI, 2019.
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PC ALGORITHM

conditional

iIndependencies Ori?tr}ltea;ion 0 ° G
(S W) O (W)

DATA SKELETON MARKOV EQUIVALENCE
CLASS

Spirtes, Glymour, Scheines. Causation, Prediction, and Search. MIT Press, 1993.



ORIENTATION RULES

Collider Detection (CD) Cycle Avoidance (CA)
g>® VI X g>® %ﬁ %}@
Known Non-Colliders (KNC) Meek Rule 3 (MR3)

o* o° TF

Spirtes, Glymour, Scheines. Causation, Prediction, and Search. MIT Press, 1993.



RELATIONAL CAUSAL DISCOVERY (RCD)

_
= conditional orientation
T independencies < ules <
N\ / > <

RELATIONAL SKELETON MARKOV EQUIVALENCE
DATA CLASS

aier, Marazopoulou, Arbour, and Jensen. A Sound and Complete Algorithm for Learning Causal Models from Relational Data. UAI. 201 3.
ee and Hanovar. On Learning Cau IMdIf om Relational Data. AAAI. 2016.



RELATIONAL CAUSAL DISCOVERY (RCD)

Collider Detection (CD)

Cycle Avoidance (CA)

[B... Ix]. X B...I71.Z2 [B..Ix].X |B... I7].2 B..Ix].X — [B..I7).Z B..Ix].X — [B..I7].2
N N r’d
[B..Iy].Y —> [B...Iyl.Y \% Iy].{/' — \[33._.1},]_?
[B...Iy].Y & sepset(|B...Ix].X, [B...1z].Z)
Known Non-Colliders (KNC) Meek Rule 3 (MR3)
B.. Ix] X B.. Ix] X
B...Ix].X /[B...IZ].Z B...Ix].X [B...1;).Z J/ N\ / AN
~ RN o B..Iy]Y B...Iy|.W B..Iy|Y l B...Iy|.W
B..Iy]Y B..Iy]Y | ]\ [/ wiW = | ]\ [/ W
B...17].Z B...17].Z

Orientations are propagated across perspectives

Maier, Marazopoulou, Arbour, and Jensen. A Sound and Complete Algorithm for Learning Causal Models from Relational Data. UAIL 201 3.
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TRACING THE EXECUTION OF RCD

N/
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IDENTIFY UNDIRECTED EDGES

N/
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APPLY COLLIDER DETECTION

N/
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ORIENT RELATIONAL DEPENDENCIES
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APPLY KNOWN NON-COLLIDERS

\/
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Relational domains hold considerable
promise and unique challenges to
causal inference

There is a growing literature with
many open research problem in:

* Experimental * Observational
design causal inference

* Graphical * Discovery

representations
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